Time-varying auto-regressive models for count time-series

نویسندگان

چکیده

Count-valued time series data are routinely collected in many application areas. We particularly motivated to study the count of daily new cases, arising from COVID-19 spread. First, we propose a Bayesian framework time-varying semiparametric AR(p) model for and then extend it more sophisticated INGARCH model. calculate posterior contraction rates proposed methods with respect average Hellinger metric. Our structures models amenable Hamiltonian Monte Carlo (HMC) sampling efficient computation. substantiate our by simulations that show superiority compared some existing closely fit this setting. Finally, analyze newly confirmed cases NYC spread COVID three months.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Time Series With Auto-Regressive Markov Models

It reviews the theory of Hidden Filter Hidden Markov Models and presents an extension, Mixed State Hidden Markov Models, developed jointly by Andrew Fraser and myself under his supervision. This manuscript version has only trivial differences from the original.

متن کامل

Count Time Series Models

We review regression models for count time series. We discuss the approach which is based on generalized linear models and the class of integer autoregressive processes. The generalized linear models framework provides convenient tools for implementing model fitting and prediction using standard software. Furthermore, this approach provides a natural extension to the traditional ARMA methodolog...

متن کامل

Non-linear auto-regressive models for cross-frequency coupling in neural time series

We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use o...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

The bullwhip effect under count time series: The case of first order integer auto-regressive demand processes

The impact of fast moving items, modeled by auto-regressive moving average (ARMA) type processes, on the bullwhip effect is well known. However, slow moving items that can be modeled using integer ARMA processes have received little attention. Herein, we measure the impact of bullwhip effect under a first order integer auto-regressive, INAR(1), demand process. We consider a simple two-stage sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2021

ISSN: ['1935-7524']

DOI: https://doi.org/10.1214/21-ejs1851